Dynamics of matter induced by high intensity X-rays

23.5.2017 – LII Zakopane School of Physics

Zoltan Jurek, Sang-Kil Son, Beata Ziaja, Robin Santra Theory Division, Center for Free-Electron Laser Science, DESY

Deutsches Elektronen-Synchrotron (DESY), Hamburg

CFEL–DESY Theory Division

- > Theoretical and computational tools are developed to predict the behavior of matter exposed to intense electromagnetic radiation.
- Quantum-mechanical and classical techniques are employed to study ultrafast processes happen on ps (10⁻¹² s) down to as (10⁻¹⁸ s) timescales.
- Research interest: Dynamics of excited many-electron systems; Motion of atoms during chemical reactions; X-ray radiation damage in matter; ...

Members of the CFEL-DESY Theory Division: C. Arnold, S. Bazzi, Y.-J. Chen, O. Geffert, D. Gorelova, L. Inhester, A. Hanna, Z. Jurek, A. Karamatskou, M. Krishna, Z. Li, V. Lipp, M. A. Malik, P. K. Mishra, **R. Santra (Division Director)**, V. Saxena, S.-K. Son, V. Tkachenko, K. Toyota, R.Welsch, B. Ziaja

Subgroups:

'Ab-initio X-ray Physics' (S.-K. Son)
'Chemical Dynamics' (R.Welsch)
'Modeling of Complex Systems' (B. Ziaja)

Introduction

Elements of x-ray – matter interaction

Complex dynamics of matter induced by high intensity X-rays via experiments and simulations

- Sequential single photon absorption
- Non-equilibrium dynamics
- Coulomb explosion
- Nanoplasma formation
- Radiation damage

Dynamics of matter induced by high intensity X-rays

Dynamics of matter induced by high intensity X-rays

X-rays

Electromagnetic radiation Photon Energy: 100 eV – 100 keV Wavelength: 0.01 nm – 10 nm

https://en.wikipedia.org/wiki/X-ray

X-rays

Electromagnetic radiation Photon Energy: 100 eV – 100 keV Wavelength: 0.01 nm – 10 nm

https://en.wikipedia.org/wiki/X-ray

Dynamics of matter induce by high intensity X-rays

> Photon energy: 100 eV – 100 keV

<< $m_e c^2 \rightarrow$ no relevance in particle physics

≥ electron binding energies in the atoms

Predominant interaction with atomic electrons

X-ray – Matter interaction: Theory

X-ray – Matter interaction: Theory

> Interaction: perturbation

$$\hat{H} = \hat{H}_{\text{mol}} + \hat{H}_{\text{EM}} + \hat{H}_{\text{int}}$$

$$\hat{H}_{0} \quad \text{Perturbation}$$

$$\hat{H}_{int} = \alpha \int d^{3}x \, \hat{\psi}^{\dagger}(x) \left[\hat{A}(x) \cdot \frac{\nabla}{i} \right] \hat{\psi}(x) + \frac{\alpha^{2}}{2} \int d^{3}x \, \hat{\psi}^{\dagger}(x) \hat{A}^{2}(x) \hat{\psi}(x),$$

$$\hat{H}_{\text{EM}} = \sum_{k,\lambda} \omega_{k} \hat{a}_{k,\lambda}^{\dagger} \hat{a}_{k,\lambda}$$

$$\hat{H}_{n} = \int d^{3}x \, \hat{\psi}^{\dagger}(x) \left\{ -\frac{1}{\nabla} \nabla^{2} - \sum \frac{Z_{n}}{2} \right\} \hat{\psi}(x)$$

$$\hat{H}_{\text{el}} = \int d^3 x \,\hat{\psi}^{\dagger}(x) \left\{ -\frac{1}{2} \nabla^2 - \sum_n \frac{|\mathbf{z}_n|}{|\mathbf{x} - \mathbf{R}_n|} \right\} \hat{\psi}(x)$$
$$+ \frac{1}{2} \int d^3 x \int d^3 x' \,\hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}(x') \frac{1}{|\mathbf{x} - \mathbf{x}'|} \hat{\psi}(x') \hat{\psi}(x)$$

X-ray – Matter interaction: Theory

Interaction: perturbation

Minimal coupling, Coulomb gauge

$$\hat{H} = \underbrace{\hat{H}_{\text{mol}} + \hat{H}_{\text{EM}}}_{\hat{H}_0} + \underbrace{\hat{H}_{\text{int}}}_{\hat{H}_0}$$

$$\hat{H}_{\text{int}} = \alpha \int d^3 x \, \hat{\psi}^{\dagger}(x) \left[\hat{A}(x) \cdot \frac{\nabla}{i} \right] \hat{\psi}(x) + \frac{\alpha^2}{2} \int d^3 x \, \hat{\psi}^{\dagger}(x) \hat{A}^2(x) \hat{\psi}(x),$$

$$w_{FI} = \frac{|S_{FI}|^2}{T}$$

= $2\pi\delta(E_F - E_I)$
 $\times \left| \langle F|\hat{H}_{int}|I \rangle + \sum_M \frac{\langle F|\hat{H}_{int}|M \rangle \langle M|\hat{H}_{int}|I \rangle}{E_I - E_M + i\epsilon} + \cdots \right|^2$

Parameters describing and quantifying processes

- rate (w)
$$\rightarrow$$
 lifetime: $\tau = 1 / w$
 \rightarrow probability = $1 - \exp(-\int_{-\infty}^{\tau} w(t) dt)$
- cross section (σ) \rightarrow w(t) = $\sigma \cdot j(t)$
Flux of
probe particles

N

X-ray – atom predominant interaction: Photoionization

> Photoionization (photoabsorption)

X-ray – atom predominant interaction: Photoionization

> Photoionization (photoabsorption)

DES

X-ray – atom predominant interaction: Photoionization

> Photoionization (photoabsorption)

Zoltan Jurek | Dynamics of matter induced by high intensity X-rays | Zakopane School of Physics 2017 | Page 17

DES

X-ray induced processes in an atom: Inner shell decays

> Fluorescent decay

$$\hbar \omega = E^{(f)}_{atom} - E^{(i)}_{atom}$$
$$\sim B_i - B_j$$

> Auger decay

$$E_{Auger} = E^{(f)}_{atom} - E^{(i)}_{atom}$$
$$\sim (B_i - B_j) - B_k$$

X-ray induced processes in an atom: Competition of decays

Fluorescence yields for K and L shells: probability of a core hole being filled by a radiative process, in competition with non-radiative processes

Dynamics of matter induced by high intensity X-rays

Synchrotrons and Free-Electron Lasers in the world

diamond.ac.uk

High x-ray intensity \rightarrow how high is it?

photon-science.desy.de

Ribic, Margaritondo, J. Phys. D 45 213001 (2012)

Pellegrini, Rev. Mod. Phys. 88 015006 (2016)

High x-ray intensity \rightarrow how high is it?

Probability of photoionization during a single pulse (disregarding all other processes)

$$p = 1 - \exp(-\int_{-\infty}^{T = +\infty} w(t) dt) = 1 - \exp(-\int_{-\infty}^{T = +\infty} \sigma j(t) dt)$$

~ $1 - \exp(-\sigma N_{photon} / A_{focus}) = 1 - \exp(-\sigma F)$ (F: Fluence)

Cross section for Carbon at 1 keV: $\sigma_{Carbon} \sim 0.044 \text{ Mb} (= 4.4 \cdot 10^{-24} \text{ m}^2)$

	Synchrotron	XFEL
N _{photon} / pulse	106	1012
A _{focus}	1µm²	1µm²
T _{pulse}	~ 20 ps	~ 10 100 fs
P _{Carbon}	4.4 · 10 ⁻⁵	0.988
Signal vs. Fluence	linear	non-linear
Zoltan Jurak Dynamics of mat	tor induced by high intensity X rays I Z	akanana School of Dhysics 2017 Daga 23

Dynamics of matter induced by high intensity X-rays

Single atoms in intense x-rays

- > Theory: **sequential single photon absorption** dominates
- Proof of principle measurement at Linac Coherent Light Source on Neon

Synchrotron: up to Ne²⁺

Single atoms in intense x-rays

- > Theory: **sequential single photon absorption** dominates
- Proof of principle measurement at Linac Coherent Light Source on Neon

Single atoms in intense x-rays

Theory: convential single photon abcorption dominates **Volume integrated signal Molecular jet** Jet size **Focus** ~1mm ~1µm

L. Young et al Nature 466 56 (2010)

High intensity x-ray induced dynamics: challenge for theory

> Various different electronic configurations may appear transiently

Multiphoton absorption after/during decay cascade

- \rightarrow More than 20 million multiple-hole configurations
- \rightarrow More than 2 billion x-ray-induced processes

High intensity x-ray induced dynamics: challenge for theory

Various different electronic configurations may appear transiently In many atom systems: environmental effects

Non-equilibrium dynamics

- ► Highly excited matter → how to capture theoretically?
- > For single atoms: **XATOM** (ab initio code)
- For atomic clusters, many-atom systems: XMDYN

(Monte Carlo / Molecular Dynamics code)

Computational tool: XATOM

> Ab initio code based on the Hartree-Fock-Slater approach

Computational tool: XMDYN

Atomistic Model + Molecular Dynamics (MD) in-house code

■ Bound electrons → Occupation numbers

Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo

Rates by **XATOM** package (Sang-Kil Son, Robin Santra)

> Real space dynamics: MD

- atoms/ions and (quasi-) free electrons: classical particles
- classical force fields: Coulomb ; Newton's equations
- > Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary ionization
 - recombination

> Bound electrons → Occupation numbers Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo Rates by XATOM package (Sang-Kil Son, Robin Santra)

Real space dynamics: MD

- atoms/ions and (quasi-) free electrons: classical particles
- classical force fields: Coulomb ; Newton's equations
- > Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary ionization
 - recombination

> Bound electrons → Occupation numbers Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics: MD

- atoms/ions and (quasi-) free electrons: classical particles
- classical force fields: Coulomb ; Newton's equations
- Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary ionization
 - recombination

> Bound electrons → Occupation numbers Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics: MD

- atoms/ions and (quasi-) free electrons: classical particles
- classical force fields: Coulomb ; Newton's equations
- Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary ionization
 - recombination

➤ Bound electrons → Occupation numbers
Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo
Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics: MD

- atoms/ions and (quasi-) free electrons: classical particles
- classical force fields: Coulomb ; Newton's equations
- Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary ionization
 - recombination

Computational tool: XMDYN

Atomistic Model + Molecular Dynamics (MD) in-house code

- > Bound electrons → Occupation numbers Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo
 ▲ A microscopic description of the dynamics
 - One XMDYN run → One realization of the stochastic dynamics

Fullerenes at high x-ray intensity

> Nora Berrah (WMU) et al.

C₆₀ molecules irradiated at LCLS

> The Goal:

to learn about the XFEL-induced dynamics of a highly ionized complex system via **spectroscopy**

C₆₀ @ LCLS – The Project & Collaboration

> Experiment: Nora Berrah

- B. F. Murphy, T. Osipov, L. Fang, M. Mucke, J.H.D. Eland,
 V. Zhaunerchyk, R. Feifel, L. Avaldi, P. Bolognesi, C. Bostedt,
 J. D. Bozek, J. Grilj, M. Guehr, L. J. Frasinski, J. Glownia, D. T. Ha,
 K. Hoffmann, E. Kukk, B. K. McFarland, C. Miron, E. Sistrunk,
 R. J. Squibb, K. Ueda
- > Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, R. Santra

C₆₀ @ LCLS – The Project & Collaboration

> Experiment: Nora Berrah

B. F. Murphy, T. Osipov, L. Fang, M. Mucke, J.H.D. Eland,
V. Zhaunerchyk, R. Feifel, L. Avaldi, P. Bolognesi, C. Bostedt,
J. D. Bozek, J. Grilj, M. Guehr, L. J. Frasinski, J. Glownia, D. T. Ha,
K. Hoffmann, E. Kukk, B. K. McFarland, C. Miron, E. Sistrunk,
R. J. Squibb, K. Ueda

> Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, R. Santra

B. Murphy et al., Nat. Commun. 5 4281 (2014)

 E_{photon} = 485 eV T_{pulse} = 100 fs

 E_{photon} = 485 eV T_{pulse} = 100 fs

Coulomb explosion

 $E_{photon} = 485 \text{ eV}$ $T_{pulse} = 100 \text{ fs}$

Coulomb explosion

C₆₀ @ LCLS – The Observables. Experiment vs. Theory

C₆₀ @ LCLS – The Observables. Experiment vs. Theory

> Atomic ions

Theory: No parameter fitting!

B. Murphy *et al.*, Nat. Commun. **5** 4281 (2014)
N. Berrah *et al.*, Faraday Discuss. **171** 471 (2014)

C₆₀ @ LCLS – The Observables. Experiment vs. Theory

Rare gas atomic clusters at high x-ray intensity

Rare gas clusters @ SACLA – The Experiment

Kiyoshi Ueda (Tohoku Univ.) *et al.* Ar, Xe clusters irradiated at SACLA

> The Goal:

to learn about the properties of nanoplasma formed due to XFEL irradiation via **spectroscopy**

Rare gas clusters @ SACLA – The Collaboration

> Experiment: Kiyoshi Ueda

- T. Tachibana, H. Fukuzawa, K. Motomura, K. Nagaya,
- S. Wada, P. Johnsson, M. Siano, S. Mondal, Y. Ito, M. Kimura, T. Sakai,
- K. Matsunami, H. Hayashita, J. Kajikawa, X.-J. Liu, E. Robert, C. Miron,
- R. Feifel, J. P. Marangos, K. Tono,
- Y. Inubushi, M. Yabashi, M. Yao
- > Theory: CFEL-DESY Theory Division

Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

T. Tachibana, Sci. Rep. 5 10977 (2015)

Rare gas clusters @ SACLA – The Collaboration

> Experiment: Kiyoshi Ueda

- T. Tachibana, H. Fukuzawa, K. Motomura, K. Nagaya,
- S. Wada, P. Johnsson, M. Siano, S. Mondal, Y. Ito, M. Kimura, T. Sakai,
- K. Matsunami, H. Hayashita, J. Kajikawa, X.-J. Liu, E. Robert, C. Miron,
- R. Feifel, J. P. Marangos, K. Tono,
- Y. Inubushi, M. Yabashi, M. Yao

> Theory: CFEL-DESY Theory Division

Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

Irradiation conditiona
High Intensity:
Fluence ~ 0.16 × (1 / $\sigma^{Ar}_{ph.ion.}$)
Electron uata measured

T. Tachibana, Sci. Rep. 5 10977 (2015)

> Ar₁₀₀₀ explosion in the focus

$$E_{photon} = 5 \text{ keV}$$

 $T_{pulse} = 10 \text{ fs}$

> Ar₁₀₀₀ explosion in the focus

 $E_{photon} = 5 \text{ keV}$ $T_{pulse} = 10 \text{ fs}$

Nanoplasma formation

> Ar₁₀₀₀ explosion in the focus

 $E_{photon} = 5 \text{ keV}$ $T_{pulse} = 10 \text{ fs}$

Nanoplasma formation

> Ar₁₀₀₀ explosion in the focus

Nanoplasma formation

Single Molecule Imaging Start-To-End (S2E) Simulations at the European XFEL

Single Molecule Imaging S2E Simulations

Images: Nature Photonics 4, 814-821 (2010), x-ray-optics.de, pdb.org, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 194016, SPB CDR

Single Molecule Imaging S2E Simulations

Images: Nature Photonics 4, 814-821 (2010), x-ray-optics.de, pdb.org, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 194016, SPB CDR

> S2E simulations @ European XFEL

Goal: realistic simulations

Potential: – explore possible parameter spaces

- plan experiments, optimize setup, save beamtime
- feedback to data post-processing

Requirement: framework defined, simulation tools

http://www.xfel.eu/sims2e

Single Molecule Imaging S2E Simulations

Single Molecule Imaging S2E Simulations – Collaboration

> Project Leader: Adrian P. Mancuso

Name	Organization	Role
Chun Hong Yoon	European XFEL & CFEL	Fast diffraction calculation, interfaces, more
Liubov Samoylova	European XFEL X-ray	X-ray optics, propagation code
Alexey Buzmakov	Institute of Crystallography	WPG propagation framework, interfaces
Oleg Chubar	Brookhaven National Lab	SRW wave optics core library for propagation
Zoltan Jurek	CFEL	Photon–Matter Interaction Simulation
Robin Santra	CFEL	Photon–Matter Interaction Simulation
Beata Ziaja	CFEL	Photon–Matter Interaction Simulation
Mikhail Yurkov	DESY	Source photon field simulations
Evgeny Schneidmiller	DESY	Source photon field simulations
Duane Loh	NUS	Orientation Algorithms, Image Reconstruction
Carsten Fortmann-Grote	European XFEL	Interfaces, SIMEX platform
Adrian Mancuso	European XFEL	Coordinator, Image Reconstruction
Thomas Tschentscher	European XFEL	European XFEL Director for optics and SPB

http://www.xfel.eu/sims2e

Summary

SCIENCE

> Elements of x-ray physics

Simulation tools XATOM and XMDYN

- Ionization dynamics of single atoms Ionization and real space dynamics of finite many atom systems
- Realistic simulations of single molecule imaging experiments

XTOOLS of CFEL–DESY Theory Division

- > **XATOM**¹: an ab initio integrated toolkit for x-ray atomic physics
- > XMOLECULE²: an ab initio integrated toolkit for x-ray molecular physics
- > XMDYN³: an MD/MC tool for modeling matter at high intensity x-rays
- > XHYDRO⁴: a hydrodynamic tool for simulating plasma in local equilibrium
- > XSINC⁵: a tool for calculating x-ray diffraction patterns for nano-crystals
- > XTANT⁶: a hybrid tight-binding/MD/MC tool to study phase transitions
- > XCASCADE⁷: MC tool to treat electron cascades at low x-ray excitation
- > XCALIB⁸: an XFEL pulse profile calibration tool based on ion yields
- > **BOLTZMANN**⁹: a kinetic approach for XFEL–matter interaction

X-ray physics: useful references

Theory

IOP PUBLISHIN J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 023001 (16pp) JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS doi:10.1088/0953-4075/42/2/02300

PHD TUTORIAL

Concepts in x-ray physics

Robin Santra

Argonne National Laboratory, Argonne, IL 60439, USA

Department of Physics, University of Chicago, Chicago, IL 60637, USA E-mail: rsantra@anl.gov

Received 26 November 2008 Published 29 December 2008 Online at stacks.iop.org/JPhysB/42/023001

Abstract

A basic introduction to the theory underlying x-ray processes is provided. After general remarks on the practical advantages of using x-rays for probing matter, the derivation of the minimal-coupling Hamiltonian within nonrelativistic quantum electrodynamics is outlined. Perturbation theory is reviewed and applied to describe x-ray-induced processes. In connection with x-ray absorption, inner-shell binding energies and the photon energy dependence of the x-ray absorption cross section are discussed. In the context of x-ray scattering, atomic and molecular scattering factors are introduced, the complex index of refraction is derived, and the nonrelativistic theory of Compton scattering is described. The final topic is x-ray fluorescence and Auger decay of inner-shell-excited systems

1. Introductory remarks

studying the structure and electronic properties of matter. discussed at all. Equally important is the role x-rays have come to play in medicine, archaeology, art, security, astronomy and other the derivation of the Hamiltonian underlying nonrelativistic applications. To date, 19 Nobel prizes have been awarded quantum electrodynamics is sketched. This Hamiltonian, in for x-ray-related research (W.C.Röntgen 1901, M yon Laue combination with perturbation theory (section 3), allows one 1914, W H Bragg and W L Bragg 1915, C G Barkla 1917, to describe all basic x-ray processes. X-ray absorption is the K M G Siegbahn 1924, A H Compton 1927, P J W Debye topic of section 4. In section 5, x-ray scattering processes are 1936. H J Muller 1946. M F Perutz and J C Kendrew 1962. discussed. Finally, in section 6, relaxation processes following FHC Crick, JD Watson, and MHF Wilkins 1962, D Crowfoot the excitation of an inner-shell electron are treated. Hodgkin 1964, W N Lipscomb 1976, A M Cormack and G N Hounsfield 1979, K M Siegbahn 1981, H A Hauptman and $c = 1/\alpha$, where m_e is the electron mass, e is the and J Karle 1985, J Deisenhofer, R Huber and H Michel 1988, electron charge, \hbar is Planck's constant divided by 2π , c is P D Boyer and J E Walker 1997, P Agre and R MacKinnon the speed of light in vacuum and $\alpha = \frac{e^2}{hc} \approx 1/137$ is the 2003, R Kornberg 2006).

free-electron lasers [2, 3]—is about to come online [4-6], $a_0^2 \approx 28.0$ Mb, where a barn (b) equals 10^{-28} m². The atomic it is timely to familiarize newcomers, experimentalists and unit of energy is the hartree, $E_h = m_e c^2 \alpha^2 \approx 27.2 \text{ eV}$. theorists alike, with some of the basic properties that make x-rays such a powerful tool. This is attempted in this tutorial. between the following two x-ray regimes [7, 8]. Photons The emphasis is on the development of a consistent theoretical with an energy between $\sim 10 E_b$ ($\sim 300 \text{ eV}$) and $\sim 100 E_b$ framework that may be employed to describe a variety of x-ray (a few keV) are called soft x-rays. Soft x-rays cover, roughly, processes. Throughout, the x-rays are assumed to be used as the 1s binding energies for elements ranging from carbon

0953-4075/09/023001+16530.00

a weak, essentially nonperturbative probe. Basic applications of x-rays will be covered. However, since this is a tutorial, Since their discovery in the year 1895 by Wilhelm Conrad there is not a single topic that is discussed in great depth, and Röntgen [1], x-rays have become an indispensable tool for some topics, e.g., x-ray sources and x-ray optics [7, 8], are not

> This tutorial is structured as follows. In section 2, Atomic units are employed, i.e., $m_e = 1$, |e| = 1, $\hbar = 1$

fine-structure constant. The atomic unit of length is the bohr, As a new generation of x-ray sources—so-called x-ray $a_0 = \frac{1}{a} \frac{\hbar}{m,c} \approx 0.529$ Å. The atomic unit of cross section is

Depending on the photon energy, we typically distinguish

© 2009 IOP Publishing Ltd Printed in the UK

Practical info

Center for X-Ray Optics and Advanced Light Source

X-RAY DATA BOOKLET

Albert Thompson David Attwood Eric Gullikson Malcoim Howells Kwang-Je Kim Janos Kirz Jeffrey Kortright

Ingoif Lindau Fiero Pianetta Arthur Robinson James Scofield James Underwood Douglas Vaughan Gwyn Williams Herman Winick

January 2001

Lawrence Barksky National Laboratory **Georgenty of Catelorms** Rericles, CA 94720

This work was assignated in particy for U.S. Department. of favores under Contrast the DF-A0.03-mERIODITE

http://xdb.lbl.gov/

R. Santra J. Phys. B 42 023001 (2009)

References

> D. Attwood, Soft x-rays and extreme ultraviolet radiation (Cambridge University Press).

X-ray ohysic

matte

XFE

intensi

High x-ray

ш

- > J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (Wiley).
- > R. Santra, Concepts in x-ray physics, Journal of Physics B **42**, 023001 (2009).
- A. C. Thompson and D. Vaughan, X-ray data booklet, Center for X-Ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, http://xdb.lbl.gov/.
- Ribic, Margaritondo, J. Phys. D 45 213001 (2012)
- > Pellegrini, Rev. Mod. Phys. 88 015006 (2016)
- L. Young et al Nature 466 56 (2010)
- > S.-K. Son, L. Young and R. Santra, *Phys. Rev. A* 83, 033402 (2011)
- > B. Murphy *et al.*, Nat. Commun. **5** 4281 (2014)
- > N. Berrah *et al.*, Faraday Discuss. **171** 471 (2014)
- T. Tachibana, Sci. Rep. 5 10977 (2015)
- Z. Jurek, S.-K. Son, et al., XMDYN and XATOM, J. Appl. Cryst. **49**, 1048 (2016).
- Yoon et al, Sci. Rep. 6, 24791 (2016)

THE END

